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The conditions of the existence of extreme on the concentration dependences of absolute tempera-
ture (x are mole fractions) T = T%(x}) and T = T"(xf) denoting equilibrium between two binary
regular solutions are generally developed under two assumptions: J) Free enthalpy change
of pure components k = i, j at transition from phase « to f is a linear function of temperature.
2) Concentration dependence of excess free enthalpy (identical with enthalpy) of solutions « and 8,
respectively, is described in regular model by one concentration and temperature independent
parameter for each individual phase.

Experimental results show that the regular solution model is in many cases suitable
(at least in zero approximation) for the description of the temperature and com-
position dependence of thermodynamic properties of individual phases, especially
in metallic systems. The possibility to use this model for phase equilibrium calcula-
tions was discussed e.g. in papers' ~®. These papers have not discussed the influence
of parameters of pure components (transition temperatures Ty "®, and transition
enthalpies H2"") and of phases (parameters of regular solutions w*, wP) on the form
of individual equilibrium Jines. On the other hand, similar problem has been solved
by Galov4® and Malinovsky, but not for the regular model. The conditions for the
existence of extremes in the T = T*(xi) — and T = T%x}) — dependences in binary
system with two regular solutions in equilibrium therefore has been found in this
work. The derivation is limited by two assumptions:

1) Free enthalpy change of pure components at the phase transition o — B is
a linear function of temperature (AG:™® = GpP — GY* = a, + b,T), where
k = i, j denotes the components of solution (a,, by are constants).

2) Concentration dependence of excess free enthalpy of individual phase (solu-
tion), identical with the excess enthalpy concentration dependence, is characterized
by one parameter for each individual phase: w", ¢ = a, f, (GEP = H®® = wix .
.(1 = x})). Parameters w®, wP are independent on temperature and on composition
of solution.
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THEORETICAL

At equilibrium conditions of phases « and f for partial molar mixing free enthalpy
of components k it holds?:

Gi=3Gp. (1)

The equilibrium condition in binary system has the form of two equations for non-
-ideal solution at a temperature T

GY® + RTIn xi + Gp* = GpP + RTInxf + G, (k=1 j). (2)

We can write further under the assumptions introduced above for equilibrium values
of mole fractions x?%, x” at a temperature T:

In (xffx) — (AHTPIR) [(1T2™P) = (1T)] —
= [WIRT)] (1 = x)* + [W(RT)] (1 = x1)* = 0, ©)
I [(1 = <DL = x})] — (AH;PIR) [(1T37°) = (1T)] -
= [WIRT)] (1) + [W)(RT)] (x0)* = 0,

where for temperature dependence of AG: P it is written: AGY™? = AHE™P —
— T(AH;"P|T"P) and R is the gas constant. The set of equations (3) has the ana-
Iytical solution in the case w* = w® = 0 (equilibrium of ideal solutions)®. The solu-
tion of the equations of the type (3) was found and discussed in the case of non-ideal
solutions of electrolytes in the paper®.

In the present work implicitely defined functions T = T*(x!) and T = T*(x})
are analyzed in a similar way as in the work®. The terms in equations (3) dependent
only on the temperature are separated (for the sake of simplicity we will further
write x instead of x;):

F(x% xP Ty = M(T), g(x%x", T)= Q(T), (4)
where the functions f, g, M and Q are defined by following expressions:

S 58, T) = {5 exp [wh(L = <")J(RT)J}/{x* exp [w'(1 — x*)*/(RT)]},
9" %", T) = {(1 — xP) exp [w(«"?/(RT)TH{(L — x*) exp [w'(x")*/(RT)]} ,
M(T) = exp {(AH™*|R) [(1/T;%) = (T)]}

o(T) = exp {(AHFR) [(1/T777) = (YT)]} -
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Mole fractions x?, x® are temperature dependent. A necessary conditions of the
existence of extreme of implicitely defined functions T = T*(x*) and T = T“(x“) is the
validity of relations 8T/0x* = 0 and 9T/dx" = 0, respectively. With the aim to find
this condition we differentiate equations (4) and obtain a set of linear algebraic
equations, which will be solved by Cramer’s rule:

(af [ox™) (ax[3T) + (2f]ax") (9x°[T) + of[OT = M(AH;™*|[RT?]),
(0g/ox") (8x*]0T) + (9g[0x") (0xP[0T) + 8g[0T = Q(AH:"*|[RT?]). (5)
For unknown derivatives dT[dx" and 3T/6x” we get directly with the help of Jacobi’s
functional determinants:
dT|ox* = D[D, and 98T/ox* =D[D,, (6)
where

D =|af[dx* dg|ox*
|of|ax® agfox?

= fa{(= D/[x*x"(1 — x*) (1 = x")] + 2w*|[RTx"(1 — x*)] +
+ 2[RTE(L — X)) = 4w w(RT)} (x* = +*),

D, = — ‘a f[ox® [M(AH™P|[RT?]) — of[0T]
ag/ax* [Q(AHT*[[RT*]) ~ dgfoT]
D, = ‘af/ax [M(AHZ"*/[RT?]) — 8f[oT] |
aglox* [Q(AHTY[RT?]) — dgJoT] |
Further it holds:
ofjox* = F{[2w(1 = ¥YRT)] ~ [T}
afjox = 7{[1)"] - 21 — X*)(RT)]},
sgfox = g([(1 = ¥)] — [w<URT)] ,
oglaxt = g{[28x|(RTY] ~ [1](1 — ]},
01J0T = F{[w(1 - ) — w1 — Y[RT7} ,
29/oT = g{[wi(x)* = W Y/[RT]} .
From equations (6) it is evident that the necessary condition for the existence of ex-

treme of the functions T = T*(x*) and T = T*(x) is fulfilled (in the case of x*, x* + 0
and x* xP + 1) when x* = x® in accordance with the paper®. We shall discuss
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only this case. A sufficient condition for the existence of the extreme is then the validity
of relation 82T/é(x*)* # 0 and 8>T/d(x")* # 0, respectively, for x* = x".
From the equations (6) we get by differentiation:

0*T[o(x*)* = (D/D,) = {[D'D, — DD;]I[D.]"}

and (7)
a*T|a(x")* = (D[D,) = {[D'D, — DD}]I[D,]*}

respectively. In the first equation in equations (7) symbol * denotes 8/0x* and in the

second equation in equations (7) it denotes 9/dx’. With respect to the fact that
D = 0 for x* = x = x; we get from equations (7):

(@*T/o(x*)?)e = ([—Dy/ D] [*T]3(x")'D)e =
= [/(=DIT{[1/(xel1 = xeD)] = [2w*/(RT)T} {[1/(xe[1 — xe])] —
= 2w (RT)]} exp {[w” — w] [(1 = xe)* + x2)/[RT:]} )

where T is the temperature corresponding to xg. Itisevident, that there is 62T/z3(x“)2 +
+ 0 and 8*TJa(x")? # 0 for all x5(0 < x¢ < 1), when w* < 2RT; and w* < 2RT;
are fulfilled simultaneously.

DISCUSSION

We will discuss the values of parameters in phase equilibrium equations (3) in the
case of existence of an extreme on the dependences T = T*(x*) and T*(x"), respectively.
In the case x* = x* = xg equations (3) have the form:
AHTP — (AHYP T ) T + (WP — W) (1 — xg)* =0,
AHS™® — (AHS™NTS™) Ty + (0 — w) (x2)* = 0. ©)
By eliminating the temperature of extreme Tg from the equations (9) we get:
(Ti?/AHT™") — (T3P |AH5™")] xg — (Ti™PJAHT™") xe +
+ [(TPAET?) + ([T = T3P [w* — wi])] = 0. (10)

The solution of the quadratic equation (10) is a function of 3 parameters:

(xe)i.2 = {7 £ ([1] + AL = 1])Y)L1 = JT} (11)
where I = T{"P[AHY™P, J = T5;7#|AH"P and 4 = (TF™% — T37F)/(w* — wP).
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The extreme on the phase equilibrium lines exists (0 < xp < 1) when it holds:
for

I1>0, J>0: —-I<dA<J,

[<0, J<O: J< A< -I,

I1<0, J>0: (I = N] < A< [~1 T uin»

I1>0, J<O: [ T < A < [LJJ(I = J)], (12)

where [ —1, J] i, denotes the minimum value and [ -1, J],.,, the maximum value
from (—1I), J.
These conditions determine in the binary system i — j the values of (w* — wP)

allowing the existence of extreme. The regions of the existence of extreme are shown
in the Fig. 1 for various values of parameters I and J.

Example. We should illustrate these results by an example. In the paper7 the solid-liquid
equilibrium in the systems Ni-Cu (/ = 0-098 K/J, J = 0:103 K/J) and Ni-Co (f = 0-098 K/J,
J = 0-104 K/J) at constant temperature was studied at simplification In y; = aij(l %xi)z (zxij
temperature independent). In the present paper we get for the existence of extreme on the
T= T*x") —and TP = T(x*) — dependences the conditions: (w* — wP) > 3590 J/mol and
(w* — wP) < —3760 J/mol in the case of the Ni~Cu system and (w* — wP) > 405 J/mol and
(w* — wPy < —426 J/mol in the case of the Ni-Co system (x denotes liquid and f denotes solid).
The reverse inequalities denote the monotonous course of these dependences 7 = T%*(x*) and
T= TP(xP). For 1500 K it mzans in terms of a;; the limits 0-29 > (a8 — ) > —030 for
Ni-Cu and 0:033 > (a?j — oci“j) > —0-034 for Ni-Co in the case of monotonous course of T =
= T%x*) —and T = TPx)P — lines. This results agree with those of paper7.

Fic. | [ 1
The Regions of Existence of Extreme on the = R -

Lines of Phase Equilibrium T = T(x) for

Components Characterized by the Para- =

meters I and J (in K/J) L 5
Short lines denote the part of the plane,

where extreme exists. The second part of r A

solutions, with respect to central symmetry

(Eq. (11) gives X(I, J, A) = X(—1,—J,— A4), &

is not shown; A(in K mol/J). 15,21, 30'5, -g- 4
1 L 1 1 l i | 1
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In special cases we see, that no extreme exists for the case w* = wP = 0 (4 — ). The same
situation (no extreme) will occur for w* = wP = 0, in accordance with the work?®.

No extreme exists also for I = J = 0 and /= J % 0 and further at T¢"F = T Bwe £ wh)
for I= 0 or J = 0 or for sign I =+ sign J.

REFERENCES

1. Hardy H. K.: Acta Met. 7, 202 (1953).

2. Wagner K.: Thermodynamics of Alloys, p. 36. Addison-Wesley Press, Cambridge, Mass.
1952.

3. Mager T., Lucas H. L., Petzow G.: Z. Metallk. 63, 638 (1972).

4. Kaufman L., Bernstein H.: Computer Calculation of Phase Diagram, p. 50. Academic Press,
New York 1970.

5. Vikram Rao M., Hiskes R., Tiller W. A.: Acta Met. 21, 733 (1973).

6. Velisek J., Vrestal J.: Collection of IInd symposium Diffusion and Thermodynamics of Metals
and Alloys, p. 218. Institute of Physical Metallurgy, Czechoslovak Academy of Sciences,
Brno, October 1976.

7

. Viedtal J.: Collection of IInd symposium Diffusion and Thermodynamics of Metals and Alloys
p. 227. Institute of Physical Metullurgy, Czechoslovak Academy of Sciences, Brno, October
1976.

8. Malinovsky M.: Termodynamickd analyza rovnovdinych kondenzovanych heterogennych

ststav, p. 119. Slovak Institute of Chemical Technology, Bratislava 1974.

9. Galova M., Malinovsky M.: This Journal 43, 798 (1978).

Collection Czechoslovak Chem. Commun. [Vol. 46] [1981]





